Department of Mathematical and Computational Sciences
 National Institute of Technology Karnataka, Surathkal

https://sam.nitk.ac.in/

MA222 - Computational Linear Algebra
 Problem Sheet - 1
 Basic Algorithms and Notation

1. Suppose $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^{r}$ are given. Give a saxpy algorithm for computing the first column of $M=\left(A-x_{1} I\right) \cdots\left(A-x_{r} I\right)$.
2. In the conventional 2-by-2 matrix multiplication $C=A B$, there are eight multiplications: $a_{11} a_{11}, a_{11} b_{12}, a_{21} b_{11}, a_{21} b_{12}, a_{12} b_{21}, a_{12} b_{22}, a_{22} b_{21}$, and $a_{22} b_{22}$. Make a table that indicates the order that these multiplications are performed for the $i j k, j i k, k i j, i k j, j k i$, and $k j i$ matrix multiply algorithms.
3. Give an algorithm for computing $C=\left(x y^{T}\right)^{k}$ where x and y are n-vectors.
4. Specify an algorithm for computing $\left(X Y^{T}\right)^{k}$ where $X, Y \in \mathbb{R}^{n \times 2}$.
5. Formulate an outer product algorithm for the update $C=A B^{T}+C$ where $A \in \mathbb{R}^{m \times r}, b \in \mathbb{R}^{n \times r}$, and $C \in \mathbb{R}^{m \times n}$.
6. Suppose we have real n-by- n matrices C, D, E, and F. Show how to compute real n-by- n matrices A and B with just three real n-by- n matrix multiplications so that $(A+i B)=(C+i D)(E+$ $i F)$. Hint: Compute $W=(C+D)(E-F)$.
